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The topological structure of 2D disordered cellular systems
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Abstract. We analyze the structure of two dimensional disordered cellular systems generated by extensive
computer simulations. These cellular structures are studied as topological trees rooted on a central cell or
as closed shells arranged concentrically around a germ cell. We single out the most significant parameters
that characterize statistically the organization of these patterns. Universality and specificity in disordered
cellular structures are discussed.
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1 Introduction

Cellular structures, space-filling disordered patterns, are
widespread in nature [1–3]. In an ordered structure, one
must constrain the elementary bricks (or group of them)
to satisfy the local rotational symmetry compatible with
translational invariance. By contrast, a disordered struc-
ture is free of any local symmetry constraint, and only sub-
jected to the inescapable, topological condition of parti-
tioning space. In two dimensions, these structures (froths)
are partitions of the plane by irregular polygons. Disorder,
or absence of symmetry, imposes minimal incidence num-
bers (3 edges incident on a vertex, 2 faces incident on a
edge). The Four-Corner boundary between the States of
Arizona, Utah, Colorado and New Mexico is a decision
made in Washington; it has nothing to do with popula-
tion dynamics or with agricultural efficiency. It is neither
topologically, nor structurally stable: a small deformation
splits it into two topologically stable three-State vertices,
found everywhere else on Earth.

The set of all the possible configurations of a froth
can be explored by elementary, local topological transfor-
mations [4] which, in two dimensions, are: T1, exchange
of neighbours (for example, a flip between the stable al-
ternatives of UT-NM or of AZ-CO as neighbours, about
the unstable four-corner boundary); T2, disappearance (or
apparition) of a triangular cell into a single vertex. Two al-
ternative, equivalent transformations are the cell-division
(called mitosis in biology) and cell-coalescence. It can be
easily seen (Fig. 1) that local, specific combinations of di-
vision and coalescence generate the two elementary trans-
formation T1 and T2, and vice versa. These elementary,
local topological transformations are observed in all natu-
ral foams, soap froths, metallurgical grain aggregates, but
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also in biological tissues (epidermis) [5] or in the cellu-
lar networks produced by Bénard-Marangoni convection,
whether in the laboratory or on the surface of the sun
(solar granulation) [2,3].

In infinite two dimensional (2D) Euclidean froths (or
froths with periodic boundary conditions), the average
number of neighbours per cell is fixed by the Euler re-
lation to be equal to 6 [2]. Given a cell with n edges, the
quantity q = 6−n is called its topological charge. The sum
of the charges of the cells over the whole infinite Euclidean
froth must be equal to zero. The topological charge cannot
be generated or destroyed. It is just shuffled in between
cells by the topological transformations.

In this paper, extensive computer simulation are per-
formed to obtain disordered systems with more than 105

cells generated from an hexagonal lattice and applying at
random either only T1, or T1 and T2, or cell-division and
coalescence transformations. In these simulated froths, we
forbid configurations with cells which are neighbours of
themselves and cells with two edges. The typical resulting
structures are shown in Figure 2.

The structural organization of these computer-genera-
ted froths are studied in terms of the relative distances
between cells. Two different topological distances can be
introduced: the bond distance [6,7] and the shell distance
[8–11] (Sect. 2). These two distances are different: the
bond distance is defined on the graph of the froth; the shell
distance is best defined on its dual triangulation. They are
associated with the number of edges (or vertices) of the
shortest paths between two cells. The relation between
the two distances is very complex and strongly dependent
on the froth organization, because they involve minimal
paths.

The characterization of a disordered structure is a dif-
ficult task. The absence of translational order or repet-
itive local configuration makes in principle necessary to
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Fig. 1. A froth is a cellular network generated or transformed
by successive applications of two local elementary transfor-
mations: T1 (neighbours exchange), and T2 (triangular) cell
disappearance (a). These two transformations can also be re-
garded as combinations (c) of cell division and cell coalescence
(b).

Fig. 2. Typical topological froths generated by: (a) Cell divi-
sion and coalescence; (b) T1 transformations only; (c) T1 and
T2 transformations.

know the position, size and shape of every cell in order to
completely characterize the structure. But, disorder makes
most of this detailed local information unimportant. The
physical properties of the froth must be describable in
terms of macroscopic statistical information. A simple and
powerful way to study disordered cellular systems, is to an-
alyze the structure as organized around a given arbitrary
central cell. The information about the structure can be

Fig. 3. (a) The forest of n bond trees. (b) In a tree, any vertex
at distance t is connected with one bond to a vertex at distance
t− 1. Two of the three cells incident on a vertex at distance t
are also incident on a vertex at distance t−1. The mean vertex
connectivity (zt) tends asymptotically to 2, which is typical of
a tree structure spanning vertices distributed uniformly (see
also Fig. 12). In (c) vertices with connectivity z = 1 and z = 3
are labelled with white and black circles respectively.

obtained in terms of the properties of the set of cells at
a given distance (bond or shell) from the central cell. We
show that the classification by bond distances reduces the
froth to a set of trees rooted on the vertices of an arbitrary
central cell (see Fig. 3). On the other hand, in terms of
shell distance, the froth can be seen as a set of closed lay-
ers of cells arranged concentrically around the central cell
(see Fig. 4). This classification in terms of distances nat-
urally introduces a structure and a hierarchy in the froth.
Moreover, a physical meaning is directly associated to the
sets of equally-distant cells: any perturbation, signal or in-
formation propagates from a given cell to the whole froth
through these structures and cells at the same distance
are those reached — on average — at the same time and
with equal intensity by the signal. They are the successive
wave fronts of the signal in the froth.
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Fig. 4. The shell structure. Any froth can be analyzed as
structured in a system of closed concentric layers of cells at
the same shell distance with respect to the central cell. The
cells (hatched in the figure) in layer (j) with neighbours in
layers (j−1) and (j) only, are local topological defects included
between the layers.

2 Topological structure of a froth

2.1 Topological distances

Consider two cells in a froth. These cells are connected
by many paths along the edges of the direct graph or of
its dual triangulation. Two different topological distances
can be associated with minimal paths:

The bond distance, is the minimum number of edges
necessary to connect two cells in the direct graph of the
froth1. (The concepts of bond distance and of bond neigh-
bours was first introduced by one of the authors [6], who
called them T1 distance and T1 neighbours, respectively
[7].)

The shell distance (or simply, topological distance
[11]), is the minimum number of edges connecting the cen-
ters of two cells in the dual triangulation2.
All the cells in the froth can be classified in terms of dis-
tances (bond & shell) with respect to a given “central”
cell.

We denote by Ft the number of cells which are at a
bond distance t and by Kj the number of cells which are

1 This path is a set of adjacent edges (‘bonds’ ) connecting
the two cells.

2 The set of equidistant cells makes a closed layer around
the central cell, and successive layers form concentric rings.
The edges separating two successive layers form a closed loop:
the ‘shell’ [11].

at a shell distance j from a given central cell. These quan-
tities are in general dependent on the number of edges n
of the central cell. For any froth on the Euclidean plane,
Ft and Kj increase with the respective distances. But the
rates of growth are characteristics of a specific cellular sys-
tem and are good, sensitive quantities to characterize its
disorder (see Sect. 4 and Refs. [12,13]).

2.2 The n rooted bond trees

Associated with the bond distance, there is a spanning for-
est of n trees rooted on the central cell and reaching every
vertex of the froth in the least number of steps. These trees
are the minimal bond paths which join the vertices of the
froth with the central cell. Consider a vertex of the froth
at a large bond distance t. It has 3 neighbouring vertices,
with at least one at a distance t−1. Select one of them and
connect it with a bond. The other neighbouring vertex at
t− 1 (if there is one) is left unconnected. Continue down
in distances until a vertex of the central cell is reached.
This is the root of the tree, which, at this stage, is simply
a branch (chain) of t bonds. Then, begin again with an-
other vertex at distance t, down in distances. This second
t-branch either meets the first at some point, or it reaches
another root (vertex of the central cell). Proceed succes-
sively with every vertex at distance t, down in distances
until the branch connects another branch or is rooted into
the central cell. Consider then the vertices at distance t−1
which have not yet been reached by the branches already
constructed, and repeat the operations above. By repeat-
ing the process to all the vertices yet unspanned at dis-
tances t, t − 1, t − 2,..., 2, 1, 0, we generate a forest of n
trees, where n is the number of vertices (and of edges) of
the central cell. These trees are rooted on the central cell
and span all the vertices of the froth. Figure 3a shows a
forest of trees up to distance 3. Each vertex in the tree has
connectivity 2 ≤ z ≤ 3, except the root and branch ends
which have connectivity 1 (zero if the tree consists of its
root vertex only, as happens, for example, if the central cell
has a 3-cell as topological neighbour). Call zt the average
vertex connectivity at distance t (1 ≤ zt ≤ 3 for t > 0 and
0 ≤ z0 ≤ 1). It follows immediately that Vt+1 = (zt− 1)Vt
and V1 = z0V0 = z0n. The number of vertices at distance
t > 1 is therefore related to the number of edges of the
central cell (n)

Vt =
[
z0

t−1∏
i=1

(zi − 1)
]
n. (1)

The bond distance associated to a cell is the bond dis-
tance of its vertex nearest to the central cell. Consider a
vertex at distance t. It has 3 incident cells. Two must also
be incident on a vertex at distance t − 1 (they are sep-
arated by the bond linking vertex t to vertex t − 1, see
Fig. 3b). Therefore, to each vertex at a given distance,
there corresponds no more than one cell at the same dis-
tance, i.e. Ft = νtVt with νt ≤ 1. In 2D Euclidean froths,
a cell has 6 vertices on average, and 3 cells are incident on
any vertex. Therefore we expect ν ' 0.5 on average.
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A special case is the hexagonal lattice where there are
6 vertices and 6 cells at distance t = 1, 12 vertices and 6
cells at t = 2, 12 vertices and 12 cells at t = 3, and, in
general Vt = Ft = 3(t+ 1) for t odd and Vt = 3(t+ 2) and
Ft = 6 for t even. We have therefore νt = 0.5 on average,
with νt = 1 when t is odd and νt = 0 when t is even. This
difference between even and odd distances is characteristic
of the hexagonal lattice. When the froth is disordered, this
difference between even and odd distances disappears and,
asymptotically, the quantities Vt and Ft grow linearly with
the distance t with νt ' 0.5. The growth law depends on
the specific system and it is studied in Sections 3 and 4.

2.3 The shell structure

The structure associated with the shell distance for a typ-
ical froth is shown in Figure 4. The shell distance foli-
ates the froth into successive layers of cells surrounding
the central cell. Most cells at a (shell) distance j from the
central cell have neighbours at distances j−1, j and j+1.
They belong to layer (j). In addition, some cells at dis-
tance j (hatched in Fig. 4) have neighbours at distances
j − 1 and j only. These cells are local defect inclusions,
intercalated between layers (j − 1) and (j).

In this paper we characterize the shell structure by the
number of cells at distance j, Kj(n), averaged over all n-
sided central cells. In the perfect honeycomb (hexagonal
froth), Kj = 6j, there are no defects, and the successive
layers have an hexagonal shape. In a random froth, the
layers are roughly circular, but wiggly. At large distances,
Kj(n) is larger than for the honeycomb, but still increases
linearly with the distance. The rate of increase is related
to the degree of disorder and to the number of topological
defects in the system [12].

2.4 The combined structure

The quantities Ft and Kj are both radial properties with
the angular dependence averaged out. In order to extract
information on the angular fluctuations, it is interesting to
study the interplay between bond and shell structures. A
bond tree develops radially outward from the central cell
along edges which are perpendicular to the shells and it
broadens sideways along edges parallel to the shells. The
distribution in the bond tree of edges parallel to the shells
gives therefore a measure of its spread. Call N(j, t) the
number of couples of cells that are simultaneously at a
shell distance j and at a bond distance t from each other.
(Clearly,

∑
tN(j, t) = KjN and

∑
j N(j, t) = FtN , with

N the total number of cells in the system.)
To calculate N(j, t), let one of the cells be the central

cell. The other cell is at shell distance j. What is the bond
distance t between the two cells? It is readily seen (Fig. 5)
that at least 2 bonds are necessary to go from one layer to
the next. Thus, tmin = 2j − 3 = tR for j ≥ 2. Therefore,
tR is the radial component of the bond distance. (In an
hexagonal froth, t = tR, for j ≥ 2.)

Fig. 5. The shortest bond path crosses at least tmin = 2j − 3
vertices to connect the central cell with a cell in the layer j.

In disordered froths, the bond distance t is, in general,
much larger than tR. Suppose, for instance, that a path
takes in average 〈v〉 extra bonds from one layer to the
next. These extra bonds correspond to segments of the
bond tree parallel to the shell and also to extra vertices
associated to the topological defects between the shells.
From the central cell to a cell at distance j, there are
〈v〉(j− 1) additional bonds and the total bond distance is
therefore t = tR+〈v〉(j−1) = (2+〈v〉)j−3−〈v〉. The num-
ber v of extra bonds between layers is a random variable
with probability distribution w(v) and mean 〈v〉. When
w(v) is Poissonian, the conditional probability P (t|j) of
finding a cell at a bond distance t, given that it lies at
a shell distance j, is a shifted Poissonian with average
t̄ = 〈v〉(j − 1) + 2j − 3 and variance σ2 = 〈v〉(j − 1) (see
Appendix A). The number of couples of cells which are si-
multaneously at a shell distance j and at a bond distance
t is therefore

N(j, t) = NKjP (t|j)

= NKj
e−〈v〉(j−1)[〈v〉(j − 1)]t−2j+3

(t− 2j + 3)!
· (2)

The arrangement of the cells in any layer can therefore
be described in terms of a single parameter 〈v〉 only.

3 Simulation of disordered cellular systems

3.1 Coalescence and Division (C-D simulation)

The disordered cellular system is generated staring form
an hexagonal lattice of N0 = 144 400 cells, with periodic
boundary conditions, and performing 5N0 of T1 transfor-
mations on edges chosen at random. Then, a cell, chosen
at random, is divided in two parts (mitosis) if it has more
than 6 sides or fused by coalescence with one of its neigh-
bours if has less than 6 sides. If it has six sides, it is divided
with probability pd = 1/4 or left unchanged with proba-
bility 1− pd = 3/4. The coalescence is performed between
the cell and one of its neighbours chosen at random. We
chose a symmetric mode of division: the two “daughters”
of an n-sided “mother” cell have both 2 +n/2 edges for n
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Fig. 6. Distribution of the number of edges per cell in the froth
generated by applying cell-division and coalescence transfor-
mations (C-D simulation).

even, and 2 + (n+ 1)/2 and 2 + (n− 1)/2 edges if n is odd
(which one has which is assigned at random).

After iterating the coalescence-division operations for
10N0 times, the resulting structure (shown in Fig. 2a)
reaches a stationary number ofN = 114 475 cells. The nor-
malized distribution of the number of edges per cell (p(n))
is shown in Figure 6. It has a maximum at n = 6 and de-
creases exponentially for n ≥ 6) as p(n) = p6 exp[−α(n−
6)] with p6 = 0.37 and α = 0.9. The second moment of
the distribution is µ2 = 1.77, and the Aboav-Weaire pa-
rameter [2,14,15] is a = 0.64.

This distribution is stationary under further division-
coalescence transformations. It is also independent of the
initial configuration. We have obtained statistically iden-
tical froths starting from the hexagonal lattice (µ2 = 0)
or from a very disordered froth with µ2 > 10. In the first
case, the system evolves from order to disorder during the
simulation. By contrast, in the second case, the disorder
of the system decreases throughout the simulation (see
Fig. 7). This is an example of self organization induced
by local random transformations only. The distribution
p(n) reaches a steady state, regardless of the parameter
pd which controls the fate of 6-sided cells. However, the
number of cells is very sensitive to pd. For pd = 1/4, once
the steady state is reached, the number of cells in the
froth remains also stable. But, when pd = 0, the number
of cells in the system decreases, whereas, when pd = 1/2,
it increases.

3.2 Random T1 (T1 simulation)

An hexagonal lattice of N = 100 172 cells and periodic
boundary conditions is disordered by flipping (T1 trans-
formation) 10N edges chosen at random. (Note that the
T1 transformation conserves the total number of cells in

num ber o f trans fo rm ations x  N   
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tow ards order
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µµ

Fig. 7. Second moment of the edges distribution (µ2) versus
the number of elementary topological transformations, in the
system generated by cell-division and coalescence transforma-
tions (C-D simulation). The system converges toward a steady
state which is independent of the starting configuration. If the
simulation starts from a very disordered state, the system self
organizes reducing the disorder by random local transforma-
tions.

n
0 2 4 6 8 10 12 14 16 18 20

p(
n)

0

Fig. 8. Distribution of the number of edges per cell in the
froth generated by T1 transformations (T1 simulation).

the system.) If the chosen edge is bounding a triangular
cell, the T1 transformation is refused (lest it would gener-
ate a cell with two sides). The probability for a T1 to be
refused increases during the disordering process, it reaches
the value of 0.21 at the end of the simulation.

A typical cellular system obtained with this simula-
tion is shown in Figure 2b. Figure 8 shows the proba-
bility distribution p(n) for this froth. The second mo-
ment is µ2 = 11.9 and the Aboav-Weaire parameter is
a = −0.79. The average number of sides per cell is equal
to 6 (as imposed by the Euler theorem [2]) but the dis-
tribution is an exponential with a maximum at n = 3,
p(n) = p3 exp[−α(n− 3)] with p3 = 0.27 and α = 0.30. In
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Fig. 9. Distribution of the number of edges per cell in the froth
generated by T1 and T2 transformations (T1-T2 simulation).

this simulation, most of the cells are triangles because it
is easier to generate a triangular cell than to make it gain
an edge by random T1.

3.3 Random T1 and T2 (T1-T2 simulation)

In this type of simulation, a flip (T1 transformation) is
performed on any edge chosen at random, except if the
edge is bounding a triangular cell. In this case, the trian-
gular cell is made to disappear (T2 transformation). For
this reason, the number of cells decreases during the simu-
lation. We found that, when 5N0 transformations are ap-
plied on an initially hexagonal lattice of N0 cells, the num-
ber of cells is reduced by half. But 10N0 transformations
are more than enough to reduce the froth to 3 (hexagonal)
cells only. This is the minimum possible number of cells
for a froth tiling a torus. Here each cell has 2 neighbours
and 6 edges and they are arranged as shown in Figure 10.
Note that, for this configuration, there are two families
of closed paths of only 4 edges, not bounding a cell, that
wind around the torus. No further T1 or T2 transforma-
tions can be applied on this final, minimal configuration
without generating a cell that is neighbour of itself.

This simulation started with an hexagonal lattice of
N0 = 250 000 cells on which we applied 5N0 of T1 or T2
transformations on edges chosen at random. The result-
ing structure had a number of cells N = 115 149. A typi-
cal froth generated by T1-T2 transformations is shown in
Figure 2c. The probability distribution p(n) is plotted in
Figure 9. It is quasi-stationary (until the system is close to
its final configuration of 6 hexagonal cell). It has a maxi-
mum in n = 4 and then decreases with an exponential tail
p(n) = p4 exp[−α(n−4)] with p4 = 0.84 and α = 0.53, for
n > 7. The second moment is µ2 = 6.33 and the Aboav-
Weaire parameter is a = 0.05.

Fig. 10. Two topologically equivalent views of the final con-
figuration for the T1-T2 simulation. There are three cells of 6
sides tiling a torus. No further T1 or T2 transformations can be
applied on this final, minimal configuration without generating
a cell that is neighbour of itself.

4 Results and discussion

For each simulation, the cellular systems are characterized
by the number of cells in the shell structure (Kj), in the
bond trees (Ft) and in the combined structure (N(j, t)),
at the respective distances j and t of the central cell. The
number of vertices in the bond trees Vt and their mean
coordination zt are also investigated.

4.1 Bond trees

The averaged number of cells in the bond tree (〈Ft〉 =∑
n p(n)Ft) as a function of the bond distance t is shown in

Figure 11. For the three sets of simulations, 〈Ft〉 increases
linearly with the distance as t → ∞, with a slope 3.577
(D-C), 4.68 (T1) and 3.112 (T1-T2). As anticipated in
Section 2, the number of vertices at distance t in the bond
tree is expected to be proportional to the number of cells
at that distance, Vt = Ft/νt. Indeed, we find a coefficient
of proportionality that asymptotically tends to νt → ν∞ =
0.5.

Asymptotically, the mean vertex connectivity zt tends
to 2, which is typical of a tree structure spanning vertices
distributed uniformly on a finite area (see Figs. 3c and
12). There are n such trees for an n-sided central cell. If
the trees were not impeding each other one would expect
Vt ∝ tn, asymptotically in t. But trees do impede each
other. This interaction between the n trees implies that,
after a certain distance, the leading contribution to Vt is
proportional to t, regardless of n. The influence of the cen-
tral cell is screened by the disorder [16], which distributes
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Fig. 11. Average number of cells 〈Ft〉 at distance t in the
bond trees, for the three simulations C-D, T1 and T1-T2. The
average is over all central cells.

Fig. 12. A bond tree spanning 1 + t(t + 1)/2, uniformly dis-
tributed vertices (here on an hexagonal tiling). There are t
vertices at distance t, at the end of the branches, with coordi-
nation 1 (white circles); the t − 1 vertices on the main trunk
have coordination 3 (black circles); the root has coordination
1. The remaining 1 + t(t − 3)/2 vertices have coordination 2.
Thus 〈z〉 = 2−O(1/t2).

the vertices uniformly on the plane. This is manifest in
Figure 13, which shows that Vt is linear in n, with a slope
independent of t.

4.2 Shell structures

The number of cells Kj at shell distance j (whether within
layer (j) or inside defect inclusions) increases linearly with
j after the first few layers. The dependence of Kj on the
number of edges n of the central cell is also linear. Among
all cells at distance j, the proportion belonging to defects
is 18% for the C-D simulation, 52% and 38% for the T1
and T1-T2 simulations, stationary after a few layers. Fig-
ure 14 shows the averaged (over all central cells) number
of cells 〈Kj〉 at a shell distance j. Figure 14 shows clearly
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Fig. 13. Number of vertices Vt in the bond trees as function
of the number of edges of the central cell n, for several bond
distances t. The data refer to the C-D simulation. Similar be-
haviours were found for the other two types of simulations.
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Fig. 14. Average number of cells 〈Kj〉 at distance j in the
shell layers, for the three simulations C-D, T1 and T1-T2 and
for the hexagonal lattice ((+) symbol). The average is over all
central cells.

that the rate of growth C of 〈Kj〉 is very different in the
three types of simulations. The number of cells at a given
shell distance is larger in the more disordered systems.
Specifically, the rate is C = 19.35 for the C-D simulation
(µ2 = 1.77), C = 56.6 for the T1 simulation (µ2 = 11.9)
and C = 25.7 for the T1-T2 simulation (µ2 = 6.33). These
values are much larger than C = 6 for the hexagonal
tiling (µ2 = 0), or than C = 2π expected if layers were
circular annuli. Indeed, in disordered froths the concen-
tric layers wiggle around the averaged circular annulus.
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Fig. 15. Average topological charge 〈Qj〉 versus j, within a
cluster bounded by a layer of cells at shell distance j. The
average is over all central cells. The topological charge of a
n-sided cell is 6− n

This behaviour has already been observed in soap and
Voronoi froths [12]. It can be interpreted as an additional,
negative curvature caused by the disorder, and compen-
sated by the positive curvature of the defects intercalated
between the layers to produce a tiling which is globally
Euclidean. A relation for the slope C in froths free of topo-
logical defects (SSI) and with shortest ranged correlations
was obtained in [12]: C = 6+(3−a)µ2, with a the Aboav-
Weaire parameter. This relation gives C = 10.2, C = 51.3
and C = 24.7 for the C-D, T1 and T1-T2 simulations, re-
spectively. The moderate agreement indicates that defects
are relevant.

The topological charge (Qj) of a cluster bounded by
layer (j) (included) has been measured in the three types
of simulation. Figure 15 shows the averaged charge 〈Qj〉
as a function of the shell distance j (the average is over all
the central cells). The topological charge 〈Qj〉 is negative
and decreases linearly with j (similar results were found
for soap and Voronoi froths [12]). The mean topological
charge per defect 〈qdef〉 is independent of j at large j. We
found 〈qdef〉 = 1.1 in the C-D simulation, 〈qdef〉 = 2.1 and
〈qdef〉 = 1.8 in the T1 and T1-T2 simulations, respectively.

The negative topological charge of the cluster (Qj) is
due to the wiggling of the boundary. The linearity shows
that the amplitude of the wiggling remains constant with
increasing shell distance. The boundary does not roughen
as j increases. The negative charge of the cluster is bal-
anced by the positive charges of the defects just outside
its boundary.

N( j,t)

t 0 20 40 60 80 100
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2000000

4000000

6000000

8000000

 j =  25

 j =  20

 j =  15

 j =  10

 j =  5

 j= 2

Fig. 16. Number of couples of cells N(j, t) at a shell distance
j and bond distance t, as function of t for several values of j.
The symbols are data taken from the T1 simulation. The full
lines are the theoretical solution equation (2) with 〈v〉 = 1.39.
Note the linear correlation between the most probable value of
t and j.

4.3 Combined structure

The distribution N(j, t) of couples of cells at shell dis-
tance j and bond distance t is represented in Figure 16
as a function of t for different values of j, for the T1 sim-
ulations. Beyond j = 10, the distribution is symmetric,
peaked at the mean value t̄ = 3.39j− 4.2, with a variance
σ2 = 1.35j+3.2. The other two types of simulation exhibit
similar behaviours. The theoretical distribution (a shifted
Poissonian, Eq. (2), derived in Appendix A) is also plotted
in Figure 16 (full line), with only one parameter 〈v〉 to be
fitted (〈v〉 measures the mean increase in lateral spread
of the tree, due to disorder, it is defined in Sect. 2). The
agreement is excellent. We obtain 〈v〉 = 0.31 (C-D simu-
lation), 〈v〉 = 1.39 (T1 simulation) and 〈v〉 = 0.84 (T1-T2
simulation). As expected, branches are longer in the more
disordered systems.

5 Conclusions

We have simulated and analyzed very different cellular
patterns which have only the name of froth in common:
they are planar networks with minimal vertex connectiv-
ity. Several disordered froths with more than 105 cells were
generated by computer simulations. The results presented
in this paper refer to three types of simulations of cellu-
lar systems (C-D, T1 and T1-T2) generated with differ-
ent techniques, which exhibit different degrees of disor-
der. They are summarized in Table 1. The T1 and T1-T2
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Table 1. Summary of the results for the three simulations and
the hexagonal tiling (see text).

µ2 a slope 〈Ft〉 slope 〈Kj〉 〈v〉

C-D 1.77 0.64 3.577 19.35 0.31

T1 11.9 −0.79 4.68 56.6 1.39

T1-T2 6.33 0.05 3.112 25.7 0.84

hexagonal 0 - 0 (t even) 6 0

tiling 3 (t odd)

simulations generate very disordered systems where the
number of edges of a cell fluctuates widely. (The sizes of
the cells have not been relaxed or adjusted in our topologi-
cal simulations). The C-D simulation generates a more ho-
mogeneous cellular pattern, somewhat akin to soap froths
or other natural cellular structures. When C-D simula-
tions are applied on an initially very disordered froth, the
system self-organises, and a more homogeneous configu-
ration with steady statistical properties is reached. In all
three types of simulation, a stationary distribution of cells
can be obtained. Moreover, the number of cells in the froth
also remains stationary in the C-D simulation for a special
value of the probability pd = 1/4 of dividing 6-sided cells.

These disordered cellular structures were characterized
in terms of two distances from an arbitrary central cell: the
bond and the shell distance. In terms of bond distances,
the froth is structured in a forest of n bond trees, rooted
on the n vertices of the central cell. They have asymptotic
vertex coordination z∞ = 2 and the number of vertices Vt
at a given distance t increases linearly both with n and
with t.

The number of cells Kj at a shell distance j from a
given central cell, increases linearly with j. This linear-
ity seems to indicate that froths remain Euclidean struc-
tures, and that the concentric layers of cells at the same
cell distance j from the central cell, if they wiggle, do not
roughen. There is no indication of fractal behaviour in our
simulations (see [17] for an — artificial — example of frac-
tal froth). The rate of increase (C) of the number Kj of
cells with the shell distance j varies strongly with the type
of simulation. It is larger for the more disordered systems,
C = 6 for the hexagonal tiling, and C ' 19, 25 and 56
for the C-D, T1-T2, and T1 simulations, respectively. The
slope of Kj versus j is therefore a very good parameter to
differentiate froths with various degrees of disorder. More-
over, these differences should be observable in the physical
properties of the froth like the diffusion coefficient [18].

The topological charge Qj of a cluster of cells at shell
distances i ≤ j from a given central cell is negative, with a
linear dependence on j. This shows that layers of equidis-
tant cells wiggle without roughening at larger distances,
that this negative topological charge or effective curvature
is entirely due to the outermost layer, and that it is com-
pletely balanced by the positive charges of the topological
defects just outside the outermost layer of the cluster.

In a given froth, the two topological structures bond
trees and shell structure are intimately related. The com-
bined structure was studied in terms of the number N(j, t)
of cells which are simultaneously at a shell distance j and
at a bond distance t from a given central cell. We find
that the combined structure is well described by only one
parameter 〈v〉, the mean number of extra bonds between
adjacent layers.

All two dimensional froths are topological cellular net-
works filling an Euclidean surface. Specific froths, whether
natural or produced by different types of simulations, dif-
fer primarily by the amount of disorder, i.e. by the vari-
ance µ2 of the distribution p(n) of n-sided cells. Univer-
sality can be seen in the linear dependence of the number
of cells Kj or Ft on the distance j or t and, independently,
on n (the number of sides of the central cell). These are
consequences of the flat surface on which the froth lies,
regardless of the topological charge of the central cell [16].
Specificity shows up chiefly in the rate of increase (C) of
the number Kj of cells at the same shell distance j (were
C − 6 increases with µ2). Disorder thickens the jth shell
and wiggles its outer boundary. By contrast, the number
Ft of cells at bond distance t is, asymptotically, uncor-
related to disorder. This is probably because the rooted
bond trees impede each other.

T. Aste acknowledges partial support from the European
Union (TMR contract ERBFMBICT950380).

Appendix A: Distribution of bond distances of
cells all at the same shell distance

Here, we estimate the quantity N(j, t). First consider the
layer of cells at a shell distance j from the central cell. Let
P (t|j) be the conditional probability of finding, among
all the cells at shell distance j from the central cell, a
cell at a bond distance t. This probability can be written
in terms of N(j, t) as P (t|j) = N(j, t)/[

∑
tN(j, t)]. Let

w(i) be the probability to require 2 + i bonds in the path
between a layer and the next. Therefore, any cell in layer j
is connected, in the bond tree, to a nearest cell the layer j−
1 through a (shortest) path of 2+i bonds, with probability
w(i). Thus,

P (t|j) =

t−2j+3∑
i=0

w(i)P (t− i− 2|j − 1) (for j > 2). (A.1)

Let us now calculate P (t|1) and P (t|2). Cells sharing an
edge with the central cell (j = 1) are at a bond distance
zero. Thus, P (t|1) = δt,0). Cells of the second layer (j = 2)
are connected to the nearest cell in the first layer through a
path of 1 + i bonds with the same probability w(i) (i = 0
labels those cells connected by one bond directly to the
central cell). Thus,

P (t|2) =
t−1∑
i=0

w(i)P (t− i− 1|1) = w(t − 1). (A.2)
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This fixes the initial condition in equation (A.1).
The weights w(i) can be in principle any discrete prob-

ability distribution. The simplest case is when w(i) = δi,0.
In this case, equation (A.1) has the solution P (t|j) =
δt,2j−3. This solution has values different from zero only
for t odd, it corresponds to a structure with minimal bond
length throughout, i.e. an hexagonal tiling, except for the
arbitrary central cell.
A realistic probability function for the weights is the Pois-
son distribution of mean 〈v〉:

w(i) =
e−〈v〉〈v〉i

i!
· (A.3)

With this Ansatz, equation (A.1) has the solution

P (t|j) =
e−〈v〉(j−1)[〈v〉(j − 1)]t−2j+3

(t− 2j + 3)!
· (A.4)

The number of couples of cells at shell distance j and
bond distance t is N(j, t) = NKjP (j|t). As function of t
(with j as a parameter) N(j, t) is a shifted Poisson distri-
bution with average t̄ = 〈v〉(j − 1) + 2j − 3 and variance
σ2 = 〈v〉(j − 1)).
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désordonnés. Application à la modélisation des tissus ép-
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